
PDSW-DISCS 2017

Qing Zheng, George Amvrosiadis, Saurabh Kadekodi, Michael Kuchnik
Chuck Cranor, Garth Gibson

Brad Settlemyer, Gary Grider, Fan Guo
Carnegie Mellon University

Los Alamos National Laboratory (LANL)

DeltaFS Indexed Massive Dir

Software-Defined Storage
For Fast Query

Key features
1. Require no dedicated resources

2. Almost no post-processing is needed

3. Low I/O overhead

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 2

DeltaFS Indexed Massive Dir

Target workloads
1. Data-intensive HPC simulations

2. Not designed for indexing checkpoints

3. I/O bandwidth is limited

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 3

DeltaFS Indexed Massive Dir

Agenda
Part 1 – Motivation

Part 2 – In-situ indexing design

Part 3 – API, LANL VPIC integration

Conclusion

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 4

Existing HPC builds indexes
during post-processing

Delay queries until post-processing done (5-20% simulation time)

App Lustre

Queries

Indexing
Write

Tmp

1 2

3

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 5

Problem faced:

The increasing time-to-science
Due to the growing gap between compute and I/O

Inefficient support on small data

simulation start query finish

Processing data in-transit while
data is written to storage

Need separate resources for sorting and indexing

App Lustre QueriesIndexing

Tmp

MapReduce

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 7

In-situ indexing directly on app
nodes using app resources

Lustre

Queries

data + index

Tmp

No need for a separate indexing cluster

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 8

App + Indexing

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 9

Key idea:
Reuse storage write-back buffering and

idle CPU cycles for in-situ indexing

Example app: LANL VPIC

VPIC simulation Each VPIC process simulates
millions of particles

Particle
40 bytes

Particles move across
processes during a simulation

Small random writes
After simulation: high-selective queries

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 10

TBs I/O per trajectory fetch

Query a single particle trajectory
A B C TBs search

Data object 1M...

Simulation procs

One output file per
VPIC process

A
B

E
C

D
F

P P P

...

1M...

1MACE

file-per-process

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 11

5,000x faster than baseline with
DeltaFS in-situ indexing

0.0625 0.25 1 4 16 64 256 1024 4096
Query Time (sec)

DeltaFS (w/ 1 CPU core) Baseline (Full-system parallel scan w/ 3k CPU cores)

Time for reading a single particle trajectory
(10TB, 48 billion particles)

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 12

System design:

Light-weight in-situ indexing

1. Tiny mem footprint
2. Zero write amplification

3. No read back

Part II

Resource-efficient indexing by
log-structured I/O

Tiny mem footprint, full storage b/w util.

data log

index

Lustre

buffer
App thread

Indexing thread

App proc

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 14

LSM-Trees compacts all the
time, but we can’t afford it

Must aim for low I/O overhead at 10%-20%

Compute I/O Compute I/O

Total simulation

Compaction easily causes 1000% I/O overhead
by reading/writing previously written data

…

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 15

In-situ indexing by aggressive
data partitioning

A BC D EF

A B C D E F
All-to-all shuffle

App process #0 App process #1 App process #2

…Compute I/O Compute I/O

Bound the number of data needed per query per timestep

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 16

...

data block
index block

filter ...

data block
data block

In-situ indexing as a file system
lib component

No dedicated cluster needed

shuffle
receiver

Index Log

WriteBuffer

Data Log

shuffle
sender

App data

All-to-all shuffle

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 17

Programming interface:

Indexed Massive Directory (IMD)

Part III

In-situ indexing keyed on filenames

mkdir(“./particles”, DELTAFS_IMD)

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 19

How to use Indexed Massive Dir (IMD)

1. Data searched together go into a single IMD file
e.g. one file for each particle

2. Create as many IMD files as you want
e.g. 1 trillion files for 1 trillions particles

Query you data by “open-read-close”

VPIC using DeltaFS IMD

Simulation procs

One IMD file per
VPIC particle

P P P 1M...

1T Indexed Massive
Directory

file-per-particle

A
A

D
D

B
B

E
E

C
C

F
F...

Data object
1M...Index object

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 20

A B C TBs MBs search

LANL Trinity Experiments

Compute Node
32 cores/node

…

1-99 compute nodes, 496 million – 48 billion particles

buffer
VPIC

VPIC-DeltaFS

buffer

VPIC-Baseline

VPIC

Queries

No post-processing

SSD

Burst-buffer Lustre

HDD

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 21

DeltaFS indexing

245x 665x 532x 625x 992x 2221x 4049x 5112x

0.015625
0.0625

0.25
1
4

16
64

256
1024
4096

496 992 1,984 3,968 7,936 16,368 32,736 49,104

Qu
er

y T
im

e (
se

c)

Simulation Size (million particles)

Baseline (Full-system parallel scan)
DeltaFS (w/ 1 CPU core)

1 node 99 nodes2 nodes 4 node 8 node 66 nodes33 nodes16 nodes

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 22

9.63x 4.78x 2.42x
1.56x

1.29x

1.13x 1.15x 1.13x

0

40

80

120

160

200

496 992 1,984 3,968 7,936 16,368 32,736 49,104I/O
 Ti

m
e p

er
 D

um
p (

se
c)

Simulation Size (million particles)

Baseline DeltaFS

Tiny simulations Bigger simulations

1 node 99 nodes2 nodes 4 node 8 node 66 nodes33 nodes16 nodes

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 23

Conclusion

• Indexed Massive Dir (~3% app mem, compaction-free, POSIX API)

• Powered by Mercury RPC

• DeltaFS is one of the Mochi micro-services

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 24

In-situ indexing for transparent, almost-free query acceleration
no dedicated nodes, no post-processing, ~15% I/O overhead

https://mercury-hpc.github.io/

https://press3.mcs.anl.gov/mochi/

https://github.com/pdlfs/deltafs

https://mercury-hpc.github.io/
https://press3.mcs.anl.gov/mochi/
https://github.com/pdlfs/deltafs

